TIRF MicroscopyFluorescence Microscopy

TIRF Microscopy

The resolution at which fluorescent molecules can be visualized depends greatly on the preparation of the sample and the objectives used, but this can be limited by out of focus light being collected in a focal plane. 

Total internal reflection fluorescence microscopy (TIRF) makes use of specific optics to produce illumination light only at the 50-100 nm range at the interface of the slide, massively reducing out of focus light and improving the ability to detect fluorescent molecules. Because of its low light intensity and high spatial resolution, it is a key technique in live-cell imaging.

TIRF is typically a very low-light technique so one of the main challenges is to collect as many of the emitted photons as possible to maximize signal to noise ratio so a highly sensitive camera is desired.

Prime 95B photo

Prime 95B

Extremely sensitive, 95% quantum efficient sCMOS camera with  11 µm pixels and EMCCD level detection.

Go beyond EMCCD for TIRF with the back-illuminated Prime 95B, which features an equivalent level of detection but with a faster speed, larger field of view and no EM-gain aging or excess noise.

The Prime 95B allows exposure times to be lowered significantly to increase acquisition speed and reduce photobleaching and photodamage to the lowest levels possible on an sCMOS camera.

TIRF samples
Kinetix photo

Kinetix

High sensitivity, 95% quantum efficient sCMOS camera with an incredibly high 400 fps full-frame speed and a massive 29.4 mm diagonal field of view.

The speed of the Kinetix significantly outperforms typical sCMOS devices. With a full-frame framerate of 400 fps and a 10 megapixel sensor, the Kinetix delivers over 4000 megapixels/second which ensures that no event goes undetected.

The high quantum efficiency and low read noise combined with the balanced 6.5 µm pixel size also delivers the sensitivity needed to get the highest image quality from a TIRF system without sacrificing resolution.

TIRF samples
Prime BSI Express Camera

Prime BSI Express

High sensitivity, 95% quantum efficient, sCMOS camera with  6.5 µm pixels,
1.0 e read noise and 95 fps full frame speed.

The high quantum efficiency and low read noise combined with the balanced 6.5 µm pixel size offers high sensitivity imaging whilst achieving Nyquist sampling with the most popular objective magnifications used for TIRF.

Customer Stories

Single Molecule Micromirror TIRF

Prof. Karl Duderstadt Max-Planck Institute of Biochemistry

“The chip size is large, giving us a large field of view, which is really fantastic, and the pixel size is small at 6.5 microns, which permits Nyquist matching on our 60x lens, maximizing resolution in our experiments.”

Read More

TIRF Microscopy

Dr. Simon Watkins University of Pittsburgh

“I think the Prime 95B is a very innovative product. Partly because of the back thinning but also because the pixel size is more appropriate than conventional sCMOS cameras.”

Read More

Neuronal Single-Molecule TIRF

Prof. Jürgen Klingauf University of Münster

“The [Prime 95B] camera has the best quantum efficiency, this is decisive when you have both temporal and spatial resolution thresholds, this was the best camera for the job.”

Read More

Contact

Subscribe to our mailing list

Good news! You have already signed up to our mailing list. If you would like to amend your preferences, please look out for one of our emails- don’t forget to check your junk folder just in case.